Skip to Content
Find More Like This
Return to Search

Powerful New Enzyme for Transforming Biomass

Great Lakes Bioenergy Research Center

Contact GLBRC About This Technology

Technology Marketing Summary

Converting plant cellulose and hemicellulose into fermentable sugars is a major bottleneck in the biofuel industry. Chemical pretreatment and enzyme hydrolysis (breakdown) usually are required.

Among chemical pretreatments, ammonia fiber expansion (AFEX) alkaline pretreatment has many advantages. For example, it is a dry process and results in cleaved lignin-carbohydrate complexes without physical extraction. A variation on the process, called extractive AFEX, leads to the production of ‘cellulose III,’ an artificial form of cellulose that may be easier to break down.

To be effective, these pretreatments must be paired with enzyme cocktails. As many as 18 different purified enzymes may be required for high yield conversion. Fewer enzymes would simplify biofuel production and lower costs. One approach is to swap out two or more single-function enzymes for a multifunctional enzyme.


UW–Madison researchers have engineered a multifunctional polypeptide capable of hydrolyzing cellulose, xylan and mannan. It is made of the catalytic core ofClostridium thermocellum Cthe_0797 (also called CelE), a linker region and a cellulose-specific carbohydrate binding module(CBM3).

C. thermocellum is a well-known cellulose-degrading bacterium whose genome has been sequenced, annotated and published.

  • Superior catalytic activity
  • Less complex enzyme cocktail
Applications and Industries
  • Biofuel production
  • Hydrolyzing cellulosic materials including filter paper, crystalline cellulose allomorph I, amorphous cellulose, cellulose III and SIGMACELL
  • May be used to improve animal fiber digestion
More Information

Related Technologies: WARF reference number P08301US02 describes a cell-free system than can be used to discover and produce target polypeptides capable of biomass conversion.

Technology Status
Development StageAvailabilityPublishedLast Updated

Contact GLBRC About This Technology

To: Jennifer Gottwald<>