Skip to Content
Find More Like This
Return to Search

Unique Carbon-Coated Cathodes Improve Electrical Conductivity (ANL-IN-09-043)

Procedure Using Carbon Precursors Have Proved Superior to Conventional Methods

Argonne National Laboratory

Contact ANL About This Technology

<em>X-ray diffraction graph of coated (10%) and uncoated Li<sub>1.2</sub>Mn<sub>0.5</sub>Ni<sub>0.176</sub>Co<sub>0.1</sub>O<sub>2</sub></em>
X-ray diffraction graph of coated (10%) and uncoated Li1.2Mn0.5Ni0.176Co0.1O2

Technology Marketing Summary

Scientists at Argonne National Laboratory have developed a coating process for cathodes that improves their electrical conductivity. This procedure, which uses carbon precursors, has proved superior to conventional methods that involve high temperatures and other extremes during the manufacturing process.


A team of Argonne researchers, led by inventors Khalil Amine and Ali Abouimrane, has developed a unique coating process that improves the conductivity of cathodes. The process consists of suspending or dissolving an electro-active material and a carbon precursor in a solvent and then depositing the carbon precursor on the electro-active material to form a carbon-coated electro-active material.

The process dispenses with the high temperature, pressure, and manufacturing extremes common in conventional chemical vapor deposition and other pyrolysis methods. When carbon-coated metal oxides (for electro-active materials) are prepared, the metal oxide often reduces to the metal species. Argonne’s method can produce carbon-coated metal oxides without the problems associated with reductions. The carbon precursor can be graphene, graphene oxide, carbon nanotubes, their derivatives, or a combination of any two or more such carbon precursors.

  • Can be charged and discharged faster than non-coated materials
  • Carbon coating assures that metal oxide will not reduce to the metal species
  • Improves electronic conductivity
  • High capacity and high current rate ideal for use in lithium batteries
Applications and Industries

Coatings for electrodes used in batteries for

  • Electric and plug-in hybrid electric vehicles
  • Portable electronic devices
  • Medical devices
  • Space, aeronautical, and defense-related devices
Technology Status
Technology IDDevelopment StageAvailabilityPublishedLast Updated

Contact ANL About This Technology

To: Elizabeth Jordan<>