Skip to Content
Return to Search


United States Patent Application

View the Complete Application at the US Patent & Trademark Office
The present invention relates to magnetic random access memory (MRAM) storage devices based on multiferroic tunnel junctions in which ferroelectric polarization is used to control and manipulate the memory state. Invention methods include: (1) method of producing tunneling electroresistance (TER) effect in multiferroic tunnel junction (MFTJ) at finite bias; (2) method of controlling the TER effect in an MFTJ at infinite bias via the switching of the relative orientation of the ferromagnetic leads; (3) method of producing monotonous bias dependence of the tunneling magnetoresistance (TMR) in a MFTJ; (4) method of controlling the size and direction of the parallel spin transfer torque (STT) component and the perpendicular STT component across the MFTJ; (5) method of producing a monotonous bias dependence of the perpendicular STT component across an MFTJ; and (6) method of controlling the size and sign of the interlayer exchange coupling in an MFTJ. The invented products are any electric-field-controlled spin transfer torque magnetoresistive memory element based on a multiferoic tunnel junction (MTFJ) with magnetic electrodes and a simple or composite ferroelectric barrier embodying any of the claimed 6 methods.
Kioussis, Nicholas (Northridge, CA), Velev, Julian (San Juan, PR), Kalitsov, Alan (San Jose, CA), Useinov, Artur (Kazan, RU)
California State University Northridge
14/ 818,075
August 4, 2015
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT [0001] This invention was made with United States Government support under "PREM--Computational Research and Education for Emergent Materials," Award No. DMR-1205734 and "Collaborative Research: Cyberinfrastructure-enabled Computational Nanoscience for Energy Technologies," Award No. EPS-1010094, both awarded by the National Science Foundation. The United States Government has certain rights in the invention.