Skip to Content
Find More Like This
Return to Search

Alloy Design and Method for Processing Low-Cost Refractory Dispersoid-Reinforced Alloys for Harsh Environments

Ames Laboratory

Contact AMES About This Technology

Technology Marketing Summary

Alloys used in applications such as exhaust valves are increasingly subject to demanding operating environments, such as high temperatures and exposure to corrosive gases; these alloys must also be able to resist high cycle fatigue, extreme surface wear, and long-term creep deformation.  Iron (Fe)-based superalloys have been developed through a mechanical alloying process that results in a dispersoid strengthened metallic material.  However, mechanical alloying can add significant costs for making alloys that perform well in high temperature environments because it requires expensive milling equipment and extensive milling time; thus commercial applications may be limited.  The long milling time required can also lead to contamination within the alloy powders.  To overcome these drawbacks, ISU and Ames laboratory researchers have developed a method of making dispersoid strengthened, corrosion/oxidation resistant atomized alloy powder particles for high temperature structural applications. 

Description

The method employs gas atomization reaction synthesis (GARS) linked with alloy design and atomizing parameters to result in the low-cost production of corrosion and/or oxidation resistant metallic alloy particles which are strengthened by disperoids that are highly resistant to coarsening and strength degradation at elevated temperatures.  This new molten metal processing technique can thus result in precision parts with superior properties.

Benefits
  • Economical (simplified process reduces costs and eliminates mechanical alloying process)
  • Scalable (commercial productions rates are higher than those for mechanical alloying)
  • Effective (enables control of batch-to-batch variation and contamination)
Applications and Industries

Powder Metallury Processing

Patents and Patent Applications
ID Number
Title and Abstract
Primary Lab
Date
Patent 8,197,574
Patent
8,197,574
Dispersoid reinforced alloy powder and method of making
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Ames Laboratory 06/12/2012
Issued
Patent 7,699,905
Patent
7,699,905
Dispersoid reinforced alloy powder and method of making
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Ames Laboratory 04/20/2010
Issued
Patent 8,864,870
Patent
8,864,870
Dispersoid reinforced alloy powder and method of making
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.
10/21/2014
Issued
Patent 8,603,213
Patent
8,603,213
Dispersoid reinforced alloy powder and method of making
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
12/10/2013
Issued
Technology Status
Technology IDDevelopment StageAvailabilityPublishedLast Updated
3362DevelopmentAvailable03/11/201103/04/2015

Contact AMES About This Technology

To: Stacy Joiner<joiner@ameslab.gov>