Skip to Content
Find More Like This
Return to Search

Microfluidic Devices

Sandia National Laboratories

Contact SNL About This Technology

Publications:

PDF Document Publication
Market Sheet
(659 KB)

Technology Marketing Summary

Sandia National Laboratories has been working on the forefront of microfluidics device and component development for over twenty years and has amassed a sizable patent portfolio, a portion of which is now available for licensing as a bundle of 50+ patents for one simple fee. To further Sandia’s goal of disseminating and transferring taxpayer-funded technology into the private sector, this bundle is offered for non-exclusive licensing with an up-front fee of $25,000 and nominal periodic maintenance fees.

Description

The inventions, devices, and methods comprising this intellectual property bundle were primarily developed in support of Sandia’s national security mission in chemical and biological defense, and as such, reflect an emphasis on compact, portable form factors and the low power and high reliability needed for extended field deployment. These bundled patents largely fall under three broad categories: chip-based devices and diagnostics, microfluidic interconnects and interfaces, and materials and fabrication methods. Licensed together, the contents of the bundle represent a broad-based suite of building blocks offering particular benefit to applications including laboratory automation, chemical and biological sample preparation and purification, separation science, analytical chemistry instrumentation, material synthesis, system integration, and biomedical diagnostics. Bundled patents include a number of capillary microfluidic valves and fittings, a unique digital microfluidic interface, methods for producing axisymmetric coaxial flow fields in a chip-based format. Also featured are interconnect devices which offer several components that can act as manifolds, check valves, or ultra-high pressure pumps. These can be used to construct devices that change the flow rate of the material and sample to detection units–including laser induced fluorescence, mass spectroscopy detectors, and flow cytometry. The fabrication materials and technologies allow the connections between microfluidic devices and external components while increasing the number of functional components that can be connected to a microfluidic device. Sandia National Laboratories does not sell its products and relies on licenses like this to commercialize its technology into unique devices that reflect an emphasis on portability and reliability.

Benefits
  • Sample concentration & efficient delivery to chip
  • Mass manufacturing methods
  • Multiple fluidic connections
  • Increased number of external components
Applications and Industries
  • Bioscience R&D
  • Medical Point-of-Care
  • Remote Sampling
  • Pharmaceuticals
  • Veterinary
Patents and Patent Applications
ID Number
Title and Abstract
Primary Lab
Date
Patent 6,994,826
Patent
6,994,826
Method and apparatus for controlling cross contamination of microfluid channels
A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.
Sandia National Laboratories 02/07/2006
Issued
Patent 6,833,068
Patent
6,833,068
Passive injection control for microfluidic systems
Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.
Sandia National Laboratories 12/21/2004
Issued
Patent 7,625,474
Patent
7,625,474
Method for a microfluidic weaklink device
The present invention relates to an electrokinetic (EK) pump capable of creating high pressures electroosmotically, and capable of retaining high pressures. Both pressure creation and retention are accomplished without the need for moving parts. The EK pump uses a polymerizable fluid that creates the pressure-retaining seal within the EK pump when polymerization is initiated, typically by exposure to UV radiation. Weaklink devices are advantageously constructed including such a pressure-retaining EK pump since, among other advantages, the response of the weaklink device relies on predictable and reliable chemical polymerization reactions.
Sandia National Laboratories 12/01/2009
Issued
Patent 7,012,342
Patent
7,012,342
Low power, scalable multichannel high voltage controller
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
03/14/2006
Issued
Patent 6,287,440
Patent
6,287,440
Method for eliminating gas blocking in electrokinetic pumping systems
A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.
Sandia National Laboratories 09/11/2001
Issued
Patent 6,019,882
Patent
6,019,882
Electrokinetic high pressure hydraulic system
A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.
Sandia National Laboratories 02/01/2000
Issued
Patent 9,190,736
Patent
9,190,736
Fabrication of small-scale structures with non-planar features
The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.
Sandia National Laboratories 11/17/2015
Issued
Patent 7,022,381
Patent
7,022,381
Method for producing high dielectric strength microvalves
A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.
Sandia National Laboratories 04/04/2006
Issued
Patent 8,703,058
Patent
8,703,058
Microfluidic devices and methods including porous polymer monoliths
Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
Sandia National Laboratories 04/22/2014
Issued
Patent 6,988,402
Patent
6,988,402
Mobile monolithic polymer elements for flow control in microfluidic devices
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Sandia National Laboratories 01/24/2006
Issued
Patent 6,537,437
Patent
6,537,437
Surface-micromachined microfluidic devices
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
Sandia National Laboratories 03/25/2003
Issued
Patent 6,782,746
Patent
6,782,746
Mobile monolithic polymer elements for flow control in microfluidic devices
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Sandia National Laboratories 08/31/2004
Issued
Patent 9,404,913
Patent
9,404,913
Micropores and methods of making and using thereof
Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2.times. a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.
08/02/2016
Issued
Patent 7,400,119
Patent
7,400,119
Modular high voltage power supply for chemical analysis
A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.
Sandia National Laboratories 07/15/2008
Issued
Patent 7,182,371
Patent
7,182,371
Edge compression manifold apparatus
A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.
Sandia National Laboratories 02/27/2007
Issued
Patent 6,599,436
Patent
6,599,436
Formation of interconnections to microfluidic devices
A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.
Sandia National Laboratories 07/29/2003
Issued
Patent 8,163,254
Patent
8,163,254
Micromanifold assembly
A micromanifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device can employ a ferrule/capillary assembly that includes: (a) a ferrule comprising an elongated member and having a bore traversing from a proximal end to a distal end of the member, wherein the bore has an inner surface and wherein the distal end of the ferrule has a tapered, threaded exterior surface, and (b) a capillary that is positioned within the bore wherein the capillary's outer surface is in direct contact with the bore's inner surface. No mating sleeve is required for the one-piece ferrule. Alternatively, the capillaries can be bonded to channels that traverse the manifold and therefore obviate the need for a ferrule.
Sandia National Laboratories 04/24/2012
Issued
Patent 9,409,357
Patent
9,409,357
Devices, systems, and methods for microscale isoelectric fractionation
Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
Sandia National Laboratories 08/09/2016
Issued
Patent 8,563,325
Patent
8,563,325
Coaxial microreactor for particle synthesis
A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.
Sandia National Laboratories 10/22/2013
Issued
Patent 6,443,179
Patent
6,443,179
Packaging of electro-microfluidic devices
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Sandia National Laboratories 09/03/2002
Issued
Patent 6,772,513
Patent
6,772,513
Method for making electro-fluidic connections in microfluidic devices
A method for forming electro-fluidic interconnections in microfluidic devices comprises forming an electrical connection between matching bond pads on a die containing an active electrical element and a microfluidic substrate and forming a fluidic seal ring that circumscribes the active electrical element and a fluidic feedthrough. Preferably, the electrical connection and the seal ring are formed in a single bonding step. The simple method is particularly useful for chemical microanalytical systems wherein a plurality of microanalytical components, such as a chemical preconcentrator, a gas chromatography column, and a surface acoustic wave detector, are fluidically interconnected on a hybrid microfluidic substrate having electrical connection to external support electronics.
Sandia National Laboratories 08/10/2004
Issued
Patent 8,871,496
Patent
8,871,496
Methods, microfluidic devices, and systems for detection of an active enzymatic agent
Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
Sandia National Laboratories 10/28/2014
Issued
Patent 6,846,399
Patent
6,846,399
Castable three-dimensional stationary phase for electric field-driven applications
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Sandia National Laboratories 01/25/2005
Issued
Patent 7,553,455
Patent
7,553,455
Micromanifold assembly
A micromanifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device can employ a ferrule/capillary assembly that includes: (a) a ferrule comprising an elongated member and having a bore traversing from a proximal end to a distal end of the member, wherein the bore has an inner surface and wherein the distal end of the ferrule has a tapered, threaded exterior surface, and (b) a capillary that is positioned within the bore wherein the capillary's outer surface is in direct contact with the bore's inner surface. No mating sleeve is required for the one-piece ferrule. Alternatively, the capillaries can be bonded to channels that traverse the manifold and therefore obviate the need for a ferrule.
Sandia National Laboratories 06/30/2009
Issued
Patent 8,047,829
Patent
8,047,829
Method for forming polymerized microfluidic devices
Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
Sandia National Laboratories 11/01/2011
Issued
Patent 6,952,962
Patent
6,952,962
Mobile monolithic polymer elements for flow control in microfluidic devices
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Sandia National Laboratories 10/11/2005
Issued
Patent 7,488,407
Patent
7,488,407
Castable three-dimensional stationary phase for electric field-driven applications
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Sandia National Laboratories 02/10/2009
Issued
Patent 7,384,526
Patent
7,384,526
High-pressure microhydraulic actuator
Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.
Sandia National Laboratories 06/10/2008
Issued
Patent 6,770,182
Patent
6,770,182
Method for producing a thin sample band in a microchannel device
The present invention improves the performance of microchannel systems for chemical and biological synthesis and analysis by providing a method and apparatus for producing a thin band of a species sample. Thin sample bands improve the resolution of microchannel separation processes, as well as many other processes requiring precise control of sample size and volume. The new method comprises a series of steps in which a species sample is manipulated by controlled transport through a junction formed at the intersection of four or more channels. A sample is first inserted into the end of one of these channels in the vicinity of the junction. Next, this sample is thinned by transport across the junction one or more times. During these thinning steps, flow enters the junction through one of the channels and exists through those remaining, providing a divergent flow field that progressively stretches and thins the band with each traverse of the junction. The thickness of the resulting sample band may be smaller than the channel width. Moreover, the thickness of the band may be varied and controlled by altering the method alone, without modification to the channel or junction geometries. The invention is applicable to both electroosmotic and electrophoretic transport, to combined electrokinetic transport, and to some special cases in which bulk fluid transport is driven by pressure gradients. It is further applicable to channels that are open, filled with a gel or filled with a porous or granular material.
Sandia National Laboratories 08/03/2004
Issued
Patent 7,004,198
Patent
7,004,198
Micro-fluidic interconnect
An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.
Sandia National Laboratories 02/28/2006
Issued
Patent 7,348,688
Patent
7,348,688
Low power, scalable multichannel high voltage controller
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
Sandia National Laboratories 03/25/2008
Issued
Patent 7,314,208
Patent
7,314,208
Apparatus and method for selectively channeling a fluid
An apparatus for selectively channeling a high temperature fluid without chemically reacting with the fluid. The apparatus includes an inlet and a membrane positioned adjacent to the inlet, each composed of a chemically inert material. The membrane is formed by compressive preloading techniques. The apparatus further includes a seat disposed on the inlet adjacent to the membrane. The seat is composed of a heat resistant and chemically inert material. Operation of the apparatus requires that the temperature of the fluid remains below the chemical characteristic melting point of the seat. The apparatus further includes an actuator coupled to the membrane for rendering the membrane in an open and a closed position with respect to the seat. Specifically, the actuator supplies a load in the normal direction to the membrane to selectively engage the membrane in a plurality of predetermined configurations. Operatively, the apparatus receives the fluid at the inlet. The fluid is received at a high temperature and is directed from the inlet to the membrane. In the closed position, the actuator engages the membrane to prevent the fluid from flowing from the inlet between the membrane and the seat. Alternatively, in the open position, the actuator engages the membrane to permit fluid flow from the inlet between the membrane and the seat to at least one outlet provided by the apparatus. In one exemplary embodiment, the fluid may be discharged from the at least one outlet to a sensor in fluid communication with the at least one outlet. Accordingly, the sensor may measure the fluid channeled through the heat resistant and chemically inert environment provided by the apparatus.
Sandia National Laboratories 01/01/2008
Issued
Patent 7,710,086
Patent
7,710,086
Modular high voltage power supply for chemical analysis
A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.
Sandia National Laboratories 05/04/2010
Issued
Patent 7,452,507
Patent
7,452,507
Portable apparatus for separating sample and detecting target analytes
Portable devices and methods for determining the presence of a target analyte using a portable device are provided. The portable device is preferably hand-held. A sample is injected to the portable device. A microfluidic separation is performed within the portable device and at least one separated component detected by a detection module within the portable device, in embodiments of the invention. A target analyte is identified, based on the separated component, and the presence of the target analyte is indicated on an output interface of the portable device, in accordance with embodiments of the invention.
Sandia National Laboratories 11/18/2008
Issued
Patent 7,094,326
Patent
7,094,326
Electrodes for microfluidic applications
An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.
Sandia National Laboratories 08/22/2006
Issued
Patent 6,821,819
Patent
6,821,819
Method of packaging and assembling micro-fluidic device
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Sandia National Laboratories 11/23/2004
Issued
Patent 7,494,557
Patent
7,494,557
Method of using sacrificial materials for fabricating internal cavities in laminated dielectric structures
A method of using sacrificial materials for fabricating internal cavities and channels in laminated dielectric structures, which can be used as dielectric substrates and package mounts for microelectronic and microfluidic devices. A sacrificial mandrel is placed in-between two or more sheets of a deformable dielectric material (e.g., unfired LTCC glass/ceramic dielectric), wherein the sacrificial mandrel is not inserted into a cutout made in any of the sheets. The stack of sheets is laminated together, which deforms the sheet or sheets around the sacrificial mandrel. After lamination, the mandrel is removed, (e.g., during LTCC burnout), thereby creating a hollow internal cavity in the monolithic ceramic structure.
Sandia National Laboratories 02/24/2009
Issued
Patent 7,161,334
Patent
7,161,334
Modular high voltage power supply for chemical analysis
A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.
Sandia National Laboratories 01/09/2007
Issued
Patent 6,797,187
Patent
6,797,187
Surface-micromachined microfluidic devices
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
Sandia National Laboratories 09/28/2004
Issued
Patent 8,808,588
Patent
8,808,588
Methods for integrating a functional component into a microfluidic device
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.
Sandia National Laboratories 08/19/2014
Issued
Patent 6,210,986
Patent
6,210,986
Microfluidic channel fabrication method
A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.
Sandia National Laboratories 04/03/2001
Issued
Patent 7,527,977
Patent
7,527,977
Protein detection system
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Sandia National Laboratories 05/05/2009
Issued
Patent 6,548,895
Patent
6,548,895
Packaging of electro-microfluidic devices
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Sandia National Laboratories 04/15/2003
Issued
Patent 7,534,334
Patent
7,534,334
Apparatus and method for concentrating and filtering particles suspended in a fluid
Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.
Sandia National Laboratories 05/19/2009
Issued
Patent 6,428,666
Patent
6,428,666
Electrokinetic concentration of charged molecules
A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.
Sandia National Laboratories 08/06/2002
Issued
Patent 6,277,257
Patent
6,277,257
Electrokinetic high pressure hydraulic system
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Sandia National Laboratories 08/21/2001
Issued
Patent 7,246,524
Patent
7,246,524
MEMS fluidic actuator
The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.
Sandia National Laboratories 07/24/2007
Issued
Patent 6,733,730
Patent
6,733,730
Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems
What is disclosed pertains to improvement in the performance of microchannel devices by providing turns, wyes, tees, and other junctions that produce little dispersion of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. The low dispersion features are particularly suited for microfluidic devices and systems using either electromotive force, pressure, or combinations thereof as the principle of fluid transport. Such microfluidic devices and systems are useful for separation of components, sample transport, reaction, mixing, dilution or synthesis, or combinations thereof.
Sandia National Laboratories 05/11/2004
Issued
Patent 8,394,312
Patent
8,394,312
Method for forming polymerized microfluidic devices
Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
Sandia National Laboratories 03/12/2013
Issued
Patent 8,940,147
Patent
8,940,147
Microfluidic hubs, systems, and methods for interface fluidic modules
Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.
Sandia National Laboratories 01/27/2015
Issued
Patent 7,351,380
Patent
7,351,380
Microfluidic structures and methods for integrating a functional component into a microfluidic device
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.
Sandia National Laboratories 04/01/2008
Issued
Patent 7,999,937
Patent
7,999,937
Microfluidic devices and methods for integrated flow cytometry
Microfluidic devices and methods for flow cytometry are described. In described examples, various sample handling and preparation steps may be carried out within a same microfluidic device as flow cytometry steps. A combination of imaging and flow cytometry is described. In some examples, spiral microchannels serve as incubation chambers. Examples of automated sample handling and flow cytometry are described.
Sandia National Laboratories 08/16/2011
Issued
Patent 7,390,377
Patent
7,390,377
Bonding thermoplastic polymers
We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.
Sandia National Laboratories 06/24/2008
Issued
Technology Status
Development StageAvailabilityPublishedLast Updated
PrototypeAvailable11/04/201611/04/2016

Contact SNL About This Technology

To: <ip@sandia.gov>