Skip to Content
Find More Like This
Return to Search

Sulfur-Graphene Oxide Nanocomposite Cathodes for Lithium/Sulfur Cells

Lawrence Berkeley National Laboratory

Contact LBL About This Technology

Publications:

PDF Document Publication

LBNL Commercial Analysis Report

(1,062 KB)

Technology Marketing Summary

A Berkeley Lab team headed by Yuegang Zhang and Elton Cairns has developed a method to fabricate battery cathodes from nanoscale flakes of graphene oxide and sulfur. This innovation solves at once two design problems that have impeded efforts to make commercially viable lithium-sulfur (Li-S) batteries: 1) sulfur is a natural insulator, and designers must find ways to overcome its resistance; 2) Li-S batteries are notoriously short-lived because sulfur that dissolves in the electrolyte can form insulating sulfides that coat and degrade the electrodes during charge/discharge cycles.

Description

 

The flake-like composites developed at Berkeley Lab are comprised of a thin (~10–30 nm) and uniform coating of sulfur on graphene oxide sheets. They are produced using simple chemical deposition techniques and a relatively low-temperature (155 °C) thermal treatment process. Graphene oxide transforms insulating graphene into a conductor by forming oxygen functional groups on the surface. These groups form anchor points to bind just enough sulfur to promote the charge/discharge reactions. Sulfur is an insulator, but its resistance is overcome when the coatings are very thin, thus the graphene oxide-sulfur composite will carry current in reactions with lithium.

The oxygen groups also immobilize the sulfur, so it does not dissolve in the electrolyte. Li-S cells currently suffer degradation because small amounts of sulfur on conventional cathodes will dissolve during discharge, forming polysulfide ions that migrate to the anode, where they are reduced to insulating solids such as Li2S and Li2S2. The polysulfides can diffuse back to the cathode and coat it as well during recharging. This process shortens the cycle life of Li-S cells. By immobilizing the sulfur, the diffusion problem is minimized. Tests show that this graphene oxide-sulfur composite cathode demonstrated high reversible charge capacity over multiple cycles.

Sulfur is a highly desirable material for rechargeable batteries because it is non-toxic, abundant, low cost, and has great potential for making high energy density rechargeable cells. In theory, Li-S cells can store much more energy than state-of-the-art lithium-ion cells, which are being used in current generations of electric cars. The Berkeley Lab invention takes advantage of sulfur’s beneficial qualities for battery technology and tackles its shortcomings.

Benefits

 

  • Uses a non-toxic, abundant, low cost material with great potential for making high energy density rechargeable cells
  • Prevents polysulfide cathode dissolution
  • Overcomes insulating property of sulfur
  • Improved charge cycling
Applications and Industries

 

  • Lithium batteries
  • Electric car batteries
  • Portable electronic devices
More Information

Ji, L., Rao, M., Zheng, H., Zhang, L., Li, Y., Duan, W., Guo, J., Cairns, E.J., Zhang, Y., “Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells,” Journal of the American Chemical Society 2011, Vol. 133, No.46, pp.18522-18525.

Technology Status
Technology IDDevelopment StageAvailabilityPublishedLast Updated
IB 3096ProposedAvailable04/30/201304/30/2013

Contact LBL About This Technology

To: Shanshan Li<ipo@lbl.gov>