Skip to Content
Find More Like This
Return to Search

Ceramic impregnated superabrasives

United States Patent

February 10, 2009
View the Complete Patent at the US Patent & Trademark Office
A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.
Radtke; Robert P. (Kingwood, TX), Sherman; Andrew (Kirtland, OH)
10/ 931,671
September 1, 2004
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Program/Project Identification No. DE-FC276-97FT34368 awarded by National Energy Technology Laboratory, Morgantown, W. Va.