Skip to Content
Find More Like This
Return to Search

Characterization of highly scattering media by measurement of diffusely backscattered polarized light

United States Patent

6,011,626
January 4, 2000
View the Complete Patent at the US Patent & Trademark Office
Los Alamos National Laboratory - Visit the Technology Transfer Division Website
An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.
Hielscher; Andreas H. (Brooklyn, NY), Mourant; Judith R. (Los Alamos, NM), Bigio; Irving J. (Los Alamos, NM)
The Regents of the University of California (Los Alamos, NM)
09/ 045,258
March 20, 1998
The present invention relates generally to the use of polarization effects in light scattered from samples to yield information about these samples and, more particularly, to the use of spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media to differentiate turbid media. This invention was made with government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy to The Regents of The University of California. The government has certain rights in the invention.